(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(y, 0), x, y)
cond2(true, x, y) → cond2(gr(y, 0), p(x), p(y))
cond2(false, x, y) → cond1(and(eq(x, y), gr(x, 0)), x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cond2(true, x, s(x14917_3)) →+ cond2(true, p(x), x14917_3)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x14917_3 / s(x14917_3)].
The result substitution is [x / p(x)].
(2) BOUNDS(n^1, INF)